Using well-solvable quadratic assignment problems for VLSI interconnect applications

نویسندگان

  • Ben Emanuel
  • Shmuel Wimer
  • Gershon Wolansky
چکیده

This paper presents several optimization problems occurring in VLSI interconnect, Networks on Chip (NoC) design and 3D VLSI integration, all possessing closed-form solutions obtained by well-solvable Quadratic Assignment Problems (QAP). The first type of problems deals with the optimal ordering of signals in a bus bundle such that the switching power, delay and noise interference areminimized.We extend a known solution of ordering the signals in a bus bundle tominimize the impact of the first orderwire-to-wire parasitic capacitance occurring between adjacent wires into a model accounting for also secondary components ofwire-to-wire parasitic capacitances. The second type of problems arises in the mapping of computation tasks into an array of processors sharing a common bus, such as those found in NoC. We show a QAP closed-form solution to the optimal mapping problem which simultaneously minimizes the switching power and the average delay of the bus. The third problem deals with the optimization of 3D VLSI, vertically stacking ordinary ICs. Some of the above problems involve k-salesmen Traveling Salesman Problem (TSP), where costs are evaluated for elements located at k-distance apart along the tour. We show a simple proof that these are well-solvable problems and obtain their solution. This is then generalized to well-solvable QAPs obtained by superposition of such TSPs. A simple proof shows that if k-distance TSPs are well-solvable, so is the QAP obtained by their sum, where the solution of 1-distance TSPs dominates all the others. © 2011 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Evaluation of Crosstalk and Delay Profiles in VLSI Interconnect Structures with Partially Coupled Lines

In this paper, we present a methodology to explore and evaluate the crosstalk noise and the profile of its variations, and the delay of interconnects through investigation of two groups of interconnect structures in nano scale VLSI circuits. The interconnect structures in the first group are considered to be partially coupled identical lines. In this case, by choosing proper values for differen...

متن کامل

Two classes of Quadratic Assignment Problems that are solvable as Linear Assignment Problems

The Quadratic Assignment Problem is one of the hardest combinatorial optimization problems known. We present two new classes of instances of the Quadratic Assignment Problem that can be reduced to the Linear Assignment Problem and give polynomial time procedures to check whether or not an instance is an element of these classes. © 2011 Elsevier B.V. All rights reserved.

متن کامل

The Quadratic Assignment Problem

This paper aims at describing the state of the art on quadratic assignment problems (QAPs). It discusses the most important developments in all aspects of the QAP such as linearizations, QAP polyhedra, algorithms to solve the problem to optimality, heuristics, polynomially solvable special cases, and asymptotic behavior. Moreover, it also considers problems related to the QAP, e.g. the biquadra...

متن کامل

Well-solvable cases of the QAP with block-structured matrices

We investigate special cases of the quadratic assignment problem (QAP) where one of the two underlying matrices carries a simple block structure. For the special case where the second underlying matrix is a monotone anti-Monge matrix, we derive a polynomial time result for a certain class of cut problems. For the special case where the second underlying matrix is a product matrix, we identify t...

متن کامل

Spice Compatible Model for Multiple Coupled Nonuniform Transmission Lines Application in Transient Analysis of VLSI Circuits

An SPICE compatible model for multiple coupled nonuniform lossless transmission lines (TL's) is presented. The method of the modeling is based on the steplines approximation of the nonuniform TLs and quasi-TEM assumptions. Using steplines approximation the system of coupled nonuniform TLs is subdivided into arbitrary large number of coupled uniform lines (steplines) with different characteristi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 160  شماره 

صفحات  -

تاریخ انتشار 2012